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ABSTRACT 

Ground delay programs (GDPs) are implemented by the Federal Aviation Administration 

(FAA) to mitigate arrival demand - capacity imbalance at an airport. Typically such 

conditions occur due to the impact of adverse weather on airport capacity. During a GDP 

flights are assigned arrival slots which may be later than their scheduled time of arrival. 

Under the Collaborative Decision Making (CDM) paradigm, which has been adopted since 

mid 90's, airlines are allowed to perform substitutions among the slots they have been 

assigned in order to reduce their internal costs and achieve their business objectives. Airlines 

may also cancel some of their flights and utilize the vacant slots by substituting some of their 

own flights. However, in certain circumstances, an airline may not be able to substitute one of 

its flights to such a slot, maybe because the time stamp associated with the slot is too early 

for substituting any flight. Therefore, after a round of intra-airline substitutions, it is possible 

that some arrival slots remain unutilized. The FAA then runs the Compression Algorithm to 

re-allocate arrival slots among flights that are not cancelled by airlines. The basic principle 

behind this algorithm is that whenever possible a delayed flight is assigned an earlier arrival 

slot, so that the unused capacity during any time period is reduced (or eliminated if possible). 

While reallocating a flight to an open slot, preference is given to flights that belong to the 

airline which has released the slot. 

In reality, GDPs are implemented in face of uncertainty in airport capacity. The uncertainty 

arises from imperfect knowledge on how the weather might evolve in the later time periods. 

In practice, however, the FAA assumes a deterministic forecast of arrival capacity and 

implements GDP based on that. In the recent years, there has been some research on 

developing optimization models to plan GDPs under probabilistic forecasts. 



In this paper, we present models that will enable collaborative decision making while 

planning GDPs in face of uncertainty. We first describe two recently developed stochastic 

optimization models for planning GDPs. The first is a static model, which means ground 

delay decisions are made once at the beginning of planning horizon and not updated later. In 

the second model, decisions are dynamically revised based on updated information on airport 

capacity. We then present a methodology which will allow airlines to perform intra-airline 

substitutions using the solutions from the stochastic models for planning GDPs. Finally, we 

present a model that performs analogous to the CDM Compression algorithm, which can be 

applied after the round of airline specific substitutions and cancellations. The objective of this 

model is to efficiently utilize the vacant slots that become available after cancellations. 



1. INTRODUCTION 

Meteorological conditions, particularly convective weather, can significantly impact the 

capacity of an airport. Other forms of adverse weather such as fog, snow/ice, low cloud 

ceiling and poor visibility can also reduce airport capacities significantly. Reduction in 

airport capacity may induce delays among flights. Typically, under reduced capacity 

conditions at an airport, the Federal Aviation Administration (FAA) implements a Ground 

Delay Program (GDP), in which certain flights are assigned pre-departure delays (or ground 

delays) at their respective origin airports. This is done to mitigate the demand-capacity 

imbalance at the destination airport caused by weather. If weather conditions become more 

severe than anticipated, some aircraft may also face airborne delay while is en-route to the 

destination airport. Airborne delay, although quite common in the National Airspace System 

(NAS) during adverse weather conditions, is undesired mainly due to expensive fuel 

consumption and safety issues related to controlling aircraft and maintaining separation 

standards while they are airborne. This has motivated researchers, since late 80's, to develop 

optimization models and algorithms to decide on the amount of ground delays that must be 

imposed on various flights when there is capacity shortfall at one or more airports. The 

problem of assigning ground delays to various flights subject to the airport capacity 

constraints in order to minimize an objective function, which is typically the sum of ground 

and airborne delays, weighted by their relative costs, is known as the ground holding problem 

(see Odoni (1987) for a systematic description of the ground holding problem). 

Within the domain of the ground holding problem, there are two sub-problems: the single 

airport ground holding problem (SAGHP) and the multi-airport ground holding problem 



(MAGHP). In the SAGHP, the problem is solved for one destination airport at a time. In the 

MAGHP, a network of airports is considered, so that delay on a given flight segment can 

propagate to downline segments flown by the same aircraft. In this paper, we will focus on 

the SAGHP. 

As theoretical research on ground holding problems has progressed, air traffic flow 

management has evolved from a completely centralized system to one in which users have 

more autonomy about how to adapt their schedules when adverse conditions reduce airport 

capacity. At the first stage of implementing a GDP, the FAA allocates arrival slots to airlines 

based on their original flight schedules and the first-come/first-served principle, commonly 

known as the ration-by-schedule (RBS) allocation. To counter uncertainty in airport capacity 

during future time intervals, which may change depending on how the weather materializes, 

the FAA might also exempt certain flights, which originate from airports that are located 

beyond certain geographical distance from the destination, from the GDP. The exempt flights 

are allowed to arrive at their scheduled times. After the initial round of slot allocations, 

airlines are allowed to perform substitutions among the slots they have been assigned in order 

to reduce their internal costs and achieve their business objectives. Airlines may also cancel 

some of their flights and utilize the vacant slots by substituting some other flights they own 

and operate. However, in certain circumstances, an airline may not be able to substitute one 

of its flights to such a slot, maybe because the time stamp associated with the slot is too early 

for substituting any flight. Therefore, after a round of intra-airline substitutions, it is possible 

that some arrival slots remain open. The FAA then runs the Compression Algorithm to re 

allocate arrival slots among flights that are not cancelled. The basic principle behind this 

algorithm is that whenever possible a delayed flight is assigned an earlier arrival slot, so that 

the unused capacity during any time period is reduced (or eliminated if possible). While 



reallocating a flight to an open slot, preference is given to flights that belong to the airline 

which has released the slot. Such collaborative planning of ground delay programs has 

resulted from adopting the Collaborative Decision Making (CDM) philosophy in the air 

traffic flow management world since mid 90's (see Hoffman 1997, and Vossen 2002 for 

detailed discussion on CDM and its implications on planning GDPs in real world). 

In this paper, we present models that will enable collaborative decision making while 

planning GDPs in face of uncertainty in airport capacity. We first describe two recently 

developed stochastic optimization models for the SAGHP. The first is a static model, which 

means ground delay decisions are made once at the beginning of planning horizon and not 

updated later. In the second model, decisions are dynamically revised based on updated 

information on airport capacity. We then present a methodology which will allow 

collaborative planning of ground delay programs in face of uncertainty using these stochastic 

SAGHP models. We describe how the FAA can use these models to do initial slot allocation 

to airlines, who can then perform intra-airline substitutions and cancellations. 

2. BACKGROUND 

In a deterministic setting, where the airport capacities during future time intervals are known 

in advance with perfect information, the SAGHP can be formulated as a minimum-cost 

network flow problem (Terrab and Odoni, 1993); although, there are certain variants of the 

deterministic SAGHP that are computationally harder (Hoffman and Ball 2000). In reality, 

however, weather forecasts are rarely perfectly accurate. In a stochastic setting, where airport 

capacities in future time intervals are uncertain, the formulation of the SAGHP becomes 

complex. There is a moderate amount of literature on stochastic optimization models for the 



SAGHP. In most of the models, the objective is to minimize the expected total cost of delay. 

The optimization models are of two types: static stochastic, and dynamic stochastic. Static (or 

single stage) stochastic models account for uncertainty, but do not utilize updated information 

on the evolution of airport capacity, while the dynamic model accounts for the ability to re 

assign ground delays depending on what weather conditions unfold. 

Richetta and Odoni (1993) first proposed an integer programming model to solve the multi-

period static stochastic SAGHP. In their model, uncertainty in airport capacity is represented 

by a finite set of scenarios, each of which represents a time-varying profile of the airport 

capacity that is likely to occur. Recently, Kotnyek and Richetta (2006) showed that when the 

ground holding costs are marginally increasing the dual of the Richetta and Odoni (1993) 

model becomes a minimum cost network flow problem in formulation, and hence integer 

solutions are guaranteed to obtain by solving the LP relaxation of the model. 

Ball et al. (2003) proposed another variant of the static stochastic SAGHP formulated as an 

integer-programming (IP) model. The Ball et al. model has the following important 

properties. The constraint matrix of the formulation is totally unimodular, which means 

integer solutions are guaranteed from LP relaxation of the model. Therefore the model can be 

applied in real time to solve practical scale problems. The Ball et al. model do not decide on 

how much ground delay to impose on individual flights. Rather, the decision variables - the 

planned airport acceptance rates (PAARs) — are the aggregate number of aircraft planned to 

arrive at the airport during various time intervals. In practice, when implementing a ground 

delay program, the FAA first sets the airport acceptance rates (the vernacular for the 

maximum number of arrivals that the airport can accommodate) during different time 

intervals, and then allocates arrival slots to airlines using certain rationing schemes, described 



later in this paper. Hence the Ball et al. model can be used in real world to set the optimum 

set of airport acceptance rates. 

Quite frequently, in practice, traffic managers make adjustments to a ground delay program 

to compensate for unanticipated change in airport capacity. This served as a motivation 

behind the development of dynamic stochastic models for the SAGHP, which are capable of 

revising ground delay decisions based on evolving forecasts. Richetta and Odoni (1994) 

formulated a (partially) dynamic multi-stage stochastic IP model. Rather than assigning 

delays to all flights at once, the Richetta-Odoni model assigns delay as the scheduled 

departure time approaches, so that decisions can be made with the most up-to-date forecast 

information. Uncertainty in airport arrival capacities is represented through a finite number of 

scenarios arranged in a probabilistic binary decision tree. As the day progresses, branches of 

the tree are realized, resulting in better information about future capacities. In Richetta-Odoni 

model, however, ground delays, once assigned, cannot be revised, even though this is 

technically possible so long as the flight has not yet departed. 

More recently, Mukherjee and Hansen (2003) developed a dynamic multi-stage stochastic IP 

formulation for the SAGHP, in which ground delays assigned to various flights can be 

revised during different decision stages, based on updated information on airport operating 

conditions. An additional advantage of the Mukherjee-Hansen model is that it can handle a 

wide range of linear and non-linear cost functions in the objective. For example, in addition 

to the standard linear delay cost function with different weights for airborne and ground 

delay, we can minimize expected squared arrival delay against schedule, and expected 

squared deviation between the assigned arrival slot and the ideal RBS arrival slot. Multiple 

objective functions can also be considered through weighting schemes that either balance 



different objectives or introduce subsidiary objectives as "tie-breakers" when the original 

model has multiple optima. 

In all the stochastic SAGHP models discussed above, uncertainty in airport conditions is 

captured through a finite set of scenarios, each representing a possible evolution of the time-

varying profile of the airport capacity. The dynamic models require more than just the set of 

capacity scenarios and their unconditional probabilities. In both Richett-Odoni (1994) and 

Mukherjee-Hansen (2003) models, a probabilistic scenario tree is required, whose branching 

reveals updated information on the evolving conditions. Recently, Liu et al. (2006) developed 

a methodology for constructing capacity scenarios, using statistical clustering techniques, and 

scenario trees from the recorded data on airport acceptance rates. Figure 1 below shows six 

possible capacity profiles, each of which is likely to occur at San Francisco Intl. airport 

(SFO) on any given day. Figure 2 shows the corresponding scenario tree, who branching 

points reveal which scenario or a set of scenarios are likely to prevail. 

3. STOCHASTIC MODELS FOR THE SAGHP 

In this section we review the two recently developed stochastic models for the SAGHP: (1) 

the Ball et al. (2003) static model, and (2) the Mukherjee and Hansen (2003) dynamic model. 

We first present the formulations and then compare the solutions obtain by applying these 

models for a realistic problem. 

3.1. The Ball et al. (2003) Static Stochastic Model for the SAGHP 



As in most of the discrete optimization models, the planning horizon is divided into T equal 

time-periods. Let there be Q capacity scenarios, each scenario depicting a possible evolution 

of airport arrival capacity over the planning period with the scenario q(q = ],2,...,Q) having 

a probability of occurrence equal to pq. Let M? denote the capacity at time period / under 

the scenario q. In order to ensure that all flights that are scheduled to land do get assigned to 

land during a time period, let there be a time period 7" + l with unlimited capacity under all 

scenarios. Let N, be the number of flights scheduled to arrive during time interval 

t{( = 1,2,...,T + l). The PAARs are the decision variables, and are denoted by 

A, (t = 1,..., T +1). Let G, denote the number of flights that are delayed on ground from time 

period t to / + 1. If the numbers of aircraft that arrive at the terminal airspace exceed airport 

capacity, certain flight might face airborne holding. Let W{q denote the number of aircraft 

that are unable to land during time period / under scenario q, and hence faces airborne 

holding during that time period. Let A. denote the cost ratio between unit airborne and ground 

delay of any flight. 

The objective function and the set of constraints are defined as follows: 

Min. Zf=1G, + I^,^lf=1/l^ (1) 

s.t. 

GT+l=O) (2) 

^ {! W«+]=0) (3) 

A,,Gt, W,q > 0 and integer (4) 

The objective function minimizes the weighted sum of expected ground and airborne delays. 

Constraint set (2) is required for flow conservation, whereas constraints (3) ensures that the 

number of aircraft that actually land during any time interval under a scenario do not exceed 



the corresponding airport capacity. The solution to the model yields the optimum values of 

the decision variables — A, — that reflect the number of aircraft that are planned to arrive, not 

necessarily land, at the terminal airspace and desire to land during various time intervals. 

3.2. Mukherjee and Hansen (2003) Dynamic Stochastic Model for the SAGHP 

Wherever possible, we use the same notations as in the static stochastic model described 

above. As mentioned before, in addition to the capacity scenarios and their unconditional 

probabilities, the dynamic model requires as input how the scenario tree unfolds. The 

following parameters are used to provide the scenario tree information (see Mukherjee, 2004, 

and Liu et al., 2006 for details). Let B be the total number of branches in the scenario 

tree; B > Q. Each branch corresponds to a set of scenarios. The n^ scenarios corresponding to 

branch be{\,..,B} is given by the setQ6 = {Sf,..,s£,..,S* };S% e{l,..,Q}. The time periods 

corresponding to start and end nodes of branch b are denoted by Of, and/jb;be{\,..,B} . 

The other input parameters are the set of flights O = {\,...,F}, their scheduled departure and 

arrival time periods — ay and df respectively, scenario-specific airport capacities M?, 

<7 = 0> ••>(?}. and the cost ratio between unit airborne and ground delay — X. 

The decision variables X%t {q e {1,..Q), f e <D,/ e {ay,.., T +1}) are binary, and are defined as 

follows: 

(1 if flight f is planned to arrive by the end of time period t 

under scenario q; 

0 otherwise 



Corresponding to the variables X%t is a set of corresponding auxiliary variables for the 

departure time period, defined as follows: 

{1 if flight f is released for departure by the end of time period t 

under scenario q; 

0 hi 0 otherwise 

The departure release variables track the planned arrival times but are displaced earlier in 

time by the amount aj-df. Hence the variables y}j are related to X}j as follows: 

[l otherwise 

The objective function and the set of constraints are given as follows: 

Min 

q=\ f 

I T (t-Arrf)[xyXyt_^xlw) 
€ <D t = Arrr v J J J t = 1 

(6) 

s.t: 

(7) 

(8) 

(9) 

As in most of the models for SAGHP, the objective function minimizes the expected total 

delay cost. Constraint set (7) ensures that the decision variables X%t are non-decreasing. 

Constraints (8) are similar to constraints (3) described above. Constraints (9) are the set of 

"coupling" constraints, sometimes known as non-anticipatory constraints in the literature (see 

Birge and Louveaus, 1997), on the ground-holding decision variables Y%t. These constraints 



force ground delay decisions to be made solely on information available at time /. For a given 

time period /, it is required that the ground holding decisions are the same for all scenarios 

associated with the same scenario tree branch b (in other words the scenarios belonging to the 

set Clb) in that time period. 

3.3. Static vs. Dynamic SAGHP 

We apply the above models - the Mukherjee and Hansen (2003) and the Ball et al. (2003) -

to a realistic problem, and compare the solutions. The FAA - ASPM1 database was use to 

obtain flight schedules at the Dallas Fort Worth Intl. airport (DFW) on a summer weekday of 

2003. A hypothetical ground holding problem was constructed, described as follows. It is 

assumed that weather impacts the airport capacity by reducing it to 60 arrival operations per 

hour during the morning hours. There are six capacity scenarios, each corresponding to a 

possible weather clearance time between 8:00AM and 10:30AM in 30 minutes increment. 

When weather clears, the capacity of the airport rises to its visual-flight-rule value, which is 

135 arrivals/hour. Figure 3 shows the capacity profiles for the six capacity scenarios q = 1,..6. 

The scenario probabilities are assumed as follows: pq = (0.4,0.2,0.1,0.1,0.1,0.1). 

Table 1 shows the expected ground and airborne delays and the total delay costs that are 

obtained when the Ball et al. (2003) static and the Mukherjee and Hansen (2003) dynamic 

models are applied, under two different cost ratios X = 3 and X = 25, to the above problem. 

When the cost ratio is relatively low - i.e. X = 3 -- airborne holding is faced in both models. 

The static model assigns relatively low ground delay compared to the dynamic model and 

releases some flights placing a bet on the capacity to improve. The dynamic model on the 

1 www.apo.data.faa.gov/ 



other hand adopts a "wait-and-see" policy and assigns relatively more ground holding 

initially. If capacity improves, ground delays are revised and flights are released earlier, 

otherwise, ground delays are extended The adaptive policy of assigning ground delays leads 

to less risk of facing airborne holding in the dynamic model. When the cost ratio is high - i.e. 

X = 25 — both models adopt a conservative ground holding policy. The dynamic model 

achieves lower expected ground delays by virtue of releasing flights if conditions improve. 

Such dynamic revision capability is absent in the static model, which faces about 42% more 

total delay cost compared to the dynamic model. 

4. COLLABORATIVE GDP PLANNING UNDER UNCERTAINTY 

The stochastic models described above can be used as decision support tools to plan ground 

delay programs in face of uncertainty. However, in order to implement them in practice, it is 

necessary to provide a methodology which will allow the airlines to make intra-airlinc 

substitutions after the FAA assigns slots to them using the solutions from either model. In this 

section, we discuss how the Ball et al. (2003) static and the Mukherjee-Hansen (2003) 

dynamic stochastic models for the SAGHP can be used to plan GDPs while allowing 

collaborative decision making involving the users (the airlines) and the controlling entity (the 

FAA). 

The collaborative GDP planning using the Ball et al. (2003) static model is described through 

Figure 4 below. As mentioned before, the Ball et al. model produces the optimal set of 

"planned airport acceptance rates" (PAARs). The FAA can use these numbers to assign slots 

to the airlines using any rationing scheme of their choice. For example, geographical 

exemptions followed by ration-by-schedule algorithm can be used for the initial slot 



allocation. Airlines can then perform substitutions and cancellations, and provide their 

updated schedules/flight-plans to the FAA, who can then run the Compression algorithm to 

re-allocate slots among airlines while utilizing the vacant slots created by some of the 

cancelled flights. An important property of the Ball et al. model is that its objective function 

remains invariant under intra-airline substitution. As time progresses, updated information on 

capacity and demand becomes available, and the whole process can be re-executed in order to 

be adaptive to the evolving conditions. 

The solution to the Mukherjee-Hansen (2003) model, although assigning slots to flights, may 

in practice be used as a means of allocating slots to airlines. The arrival slots are however, 

contingent upon which scenario (or a bundle of scenarios) is realized at the time a flight is 

released. The planned arrival time of a flight / e O under a scenario q is given by the 

expression £ t(Xi, -X%t_^). We denote this value by 0j. Therefore for each flight, the 
t=af 

model solves for an optimal portfolio of scenario contingent arrival times. For any given 

flight and a portfolio of scenario contingent arrival time periods (or slots) it is possible to 

perform a feasibility check of assigning the portfolio of slots to the flight. Feasibility depends 

on the fight's scheduled departure time and the coupling constraints given by expression (9). 

Definition 1: The assignment of flight f to the portfolio of scenario-contingent arrival time 

periodsrq,qe{1,..,Q) is feasible, iff Tq>aj-, and the variables Yjt>df satisfy the 

coupling constraints (9) defined in Section 3.2. 



Any substitution involving two flights requires swapping the scenario specific arrival slots 

between them. Therefore, for the substitution to occur, each flight must be assigned a new 

portfolio of slots that was owned by the other flight. 

Definition 2: A substitution of scenario contingent slots between any two flights /, and f2 is 

allowed if 0? (q e {1,.., Q)) is a feasible assignment for f2, and 6% is feasible for fx. 

Scenario based substitution interchanges arrival time periods between two flights under 

different scenarios, and therefore doesn't affect the arrivals (and hence ground delays) of 

other flights that are not involved in the substitutions. Also, the scenario-specific ground 

delays are not affected by a substitution of scenario-contingent arrival times between two 

flights. This is proved in the following proposition. 

Proposition 1: A scenario contingent slot substitution between two flights does not change 

the total ground delays under different scenarios. 

Proof: Let /, and /2 be two flights involved in substitution. Let scenario-specific ground 

delays of any flight /e<D before substitution be denoted by g%,q e{\,~Q) ■ After 

substitution, the scenario-specific ground delays of flight /eO\{/|,/2) remains 

unchanged. For flights f\ and fa the ground delays after substitution are given by 

g%+6% -6% and g|+#?-#? respectively. Therefore the scenario-specific total ground 

delays of the two flights involved in the substitution remains unchanged. The proof follows. 



Proposition 2: Scenario-specific planned arrival rates during any time period t e {1,.., T +1} 

remain unchanged after substitutions. 

Proof: Let /j and /2 be two flights involved in a substitution. Scenario-specific arrival time 

periods of flights /eO\{/j,/2} - i.e. X%t - remain unchanged after substitution. 

Therefore for time periods te{l,..,T + l}\{0i [}$% } scenario-specific planned arrival 

numbers remains unchanged. Before substitution the expression (X% t~X%. ,) attains a 

value 1 for / = 6% and 0 otherwise. Similarly before substitution 

(Xj f - Xqf M) = 1 iff t = 0j . After substitution, (XJ f - Xqf M) = 1 iff / = 0J. and 

(X% -Xi]) = l iff t = 9l . Therefore during time periods t&{6% \J6% }, the scenario 

specific planned arrivals after substitution remains same as that before. Q.E.D. 

Corollary I: Scenario-specific airborne delays remain same after substitution. 

Proof: From proposition 2, during any time period, the number of planned arrivals — 

(jfy-,-Xy-,_])~ remains the same before and after substitution. Therefore, it is easy to 

see, from expression (8), that the time-varying airborne queueing delay - Wtq — remains 

unchanged. 

Corollary 2: The value of the objective function of the Mukherjee-Hansen model, given in 

expression (6), remains invariant to a feasible substitution. 

Proof. The proof follows from Proposition 1 and Corollary 1. 



The above discussion focused on scenario-contingent slot substitution between two flights at 

a time. However, an airline may want to perform substitutions involving multiple flights. For 

example, a flight /j may be substituted for fa under a particular scenario, and for f$ under 

a different scenario. Furthermore, an airline may cancel some of its flights and utilize the 

vacant slots to reduce delays of some of its other flights. From the solutions to the 

Mukherjee-Hansen model it is possible to determine the scenario-specific numbers of slots -

v1t — assigned to each an airline a e A during a time interval t, where A is the set of 

airlines. The FAA allocates these scenario-contingent slots to airlines. The airlines can then 

assign a ground delay cost function to individual flights they own, and re-allocate slots 

among flights. This is similar to present day substitutions performed in a ground delay 

program. However, in order to preserve feasibility, airlines must abide by the coupling 

constraints, given by expression (9), while performing substitutions. Moreover, they must not 

re-assign more than v|, number of flights during time period t under scenario q. 

In order to show the benefits of allowing intra-airline substitutions we perform an experiment 

using the same dataset described in Section 3.3, and assuming the ground delay cost of each 

flight to be uniformly distributed between 0.5 and 1.5. The flight-specific unit costs reflect 

differences in operating cost, payload, fare, class mix, downstream connectivity, and other 

factors that may cause an airline to attach higher or lower priority to certain flights. The cost 

ratio between airborne and ground holding — k — is set to 25; i.e. there is no airborne 

holding in the solution of the Mukherjee-Hansen model. Substitutions are performed, for 100 

different realizations of ground delay cost for each flight, to minimize airlines-specific total 

ground delay cost. Figure 5 below presents the box-and-whisker plot summarizing delay cost 

reduction, by airline, after substitutions. 



Airlines that operate larger numbers of flights, such as AAL, benefit more from substitutions. 

This is intuitive, because an airline with a larger set of flights has more substitution 

opportunities. Figure 5 also shows the variation in cost reduction for the 100 different 

realizations of flight-specific ground delay unit cost. The upper and lower edge of each box 

represents the upper and lower quartiles respectively, while the diamond depicts the two 

standard deviation interval around the mean. There is considerable variability in cost 

reduction for certain airlines such as DAL and CHQ. In the former case, the explanation is 

that one DAL flight was assigned delay by the DRGH model. Depending on the cost 

reduction, this flight is substituted with another flight with lower unit delay cost in the 

substitution phase. 

After a round of cancellations and intra-airline substitutions, airlines submit their revised slot 

assignment to the FAA. Due to cancellations, there may be some slots that remain un 

utilized. This can happen if an airline is unable to substitute one of its own flights to a slot 

that is vacated by a flight that the airline has decided to cancel. Furthermore, the updated 

information may become available on evolving conditions - i.e. scenario tree branching - in 

the time that is taken by the entire process of intra-airline substitution. The Mukherjee-

Hansen model can then be re-run with updated information on both fronts — capacity and 

demand. This will allow re-assigning some flights to the vacant slots created by cancellations. 

A slight modification to the objective function, by assigning airline-specific weights that are 

proportional to the number of flights cancelled by different airlines, may produce solutions 

that are analogous to the present-day Compression algorithm which gives priority to an 

airline that has cancelled a flight while performing slot re-assignments. 



5. CONCLUSIONS 

In this paper we describe two recently developed stochastic optimization models for the 

single airport ground holding problem, and present a methodology on how these models can 

be used to plan ground delay programs in face of uncertainty in airport capacity. The first 

model - the Ball et al. (2003) model -- is static stochastic, which means the ground delay 

decisions are made once and are not revised based on updated information on the airport 

conditions. The second model - the Mukherjee-Hansen (2003) model - is dynamic stochastic 

one in which ground delays decisions are adaptive to the information on evolving airport 

capacity condition. In order to use these models in practice, it is necessary to allow airlines to 

participate in the planning process and perform substitutions that improve their internal 

objectives. In this paper we show how the solutions obtained from the stochastic models for 

the SAGHP can be used under the CDM paradigm. 

The Ball et al. (2003) static stochastic model for the SAGHP produces the optimum set of 

PAARs that can be used by the FAA to set the airport acceptance rates when a GDP is 

implemented. Thereafter, an equitable slot allocation mechanism may be adopted to assign 

arrival slots to airlines, who can then perform substitutions and cancellations. After a round 

of intra-airline slot re-allocation, the FAA can run the Compression algorithm in order to 

utilize vacant slots that may have been created by cancellations. Thus, the Ball et al. model 

produces solutions that are easily adoptable in the current system. Their model, although 

formulated as an integer programming model, can be solved as an LP because the constraint 

matrix is totally unimodular. This eases the computation time, and thus making the model 

applicable in real time. 



The Mukherjee-Hansen (2003) model, on the other hand, assigns scenario-contingent slots to 

individual flights. This however, does not restrict airlines to perform substitutions and 

cancellations. The solution to the Mukherjee-Hansen, although assigning slots to flights, may 

in practice be used as a means of allocating slots to airlines. Airlines can then perform 

substitutions among their flights while abiding by certain constraints discussed in this paper. 

Our experimental results show significant benefit, in terms of delay cost reduction, to airlines 

from this process. 

Both models require as input the information on capacity scenarios and their probabilities. 

The Mukherjee-Hansen dynamic model also requires a probabilistic scenarios tree whose 

branching reveals unfolding conditions at the airport. Constructing capacity scenarios and 

scenario trees pose a challenge to the implementation of these models in practice. Recent 

work by Liu et al. (2006) shed some light in this direction. The research on stochastic models 

for the SAGHP, integrated with that on developing capacity scenarios and scenario tree, may 

lead to an efficient decision support tool in planning ground delay programs in face of 

uncertainty in the future. 
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Table 1: Expected Delays (in aircraft-minutes) Obtained from the Stochastic Models 



SFO2003 6 clusters (k = 6) 

6 

4 

2 -\ 

0 

A* 
0? 

Time 

■Cluster 1 (10%) 

-Cluster 2 (38%) 

Cluster 3 (18%) 

■Cluster4(13%) 

-C!uster5(1O%) 

-Cluster6(11%) 

Figure 1: Capacity Scenarios and their Likelihood of Occurrence at SFO (source: Liu et 

al., 2006) 



7:15 9:15 11:0311:15 24 CO 

Figure 2: Capacity Scenario Tree and the Marginal Probabilities of the Scenarios 

(source: Liu et al., 2006) 
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Figure 3: Capacity Scenarios for the Hypothetical Problem 
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Figure 5: Box-and-Whisker Plot Showing Percentage Reductions in Ground Delay 

Costs of Different Airlines 




